
Anomalous Production of Gamma + Jets + MEt

Ray Culbertson, Sasha Pronko - Fermilab Jay Dittmann, <u>Samantha Hewamanage</u>, Nils Krumnack -Baylor University

Overview

- Work plan
- Triggers and Datasets
- Backgrounds
- Summary

Work Plan

- Dealing with well known backgrounds
- Look at all possible distributions for new physics.
 - Kinematic Distributions
 - MEt, Ht, Photon Et, Njet, Mass(pho-jet, di-jet), Jet Et etc.
 - Kinematic Distributions for events with significant MEt
 - MEt, Ht, Photon Et, Njet, Mass(pho-jet, di-jet), Jet Et etc.

Work Plan ...

- Use MEt resolution model to predict shape of fake MEt and to select events with significant MEt.
- Use 1/10 of the data set to optimize and test.
- Maybe, put limits on some models.

Used Triggers and Datasets

- Triggers
 - PHOTON 25ISO, 50 AND 70
- Datasets
 - cph10d,0h,0i,0j(up to p11 for now)
- Photon MC
 - QCD group PYTHIA- Pt min 22GeV, jqcdfh
- W/Z MC
 - EWK W->enu & Z/gamma*->ee

Tight Photon Selection

> 30 GeV & CENTRAL

Variable	Standard Cut	Loose Cut
Corrected Et	> 7 GeV or more	> 7 GeV or more
CES X and Z Fiducial	Ces X <21 cm,	Ces X <21 cm,
	9< Ces Z <230 cm	9< Ces Z <230 cm
Had/Em	< 0.125 < 0.055 + 0.00045 * ECorr	< 0.125
Cone 0.4 IsoEtCorr	EtCorr<20: < 0.1*EtCorr EtCorr>20: < 2.0+0.02*(EtCorr- 20.0)	EtCorr<20: < 0.15*EtCorr EtCorr>20: < 3.0
Chi2 (Strips+Wires)/2.0	< 20	None
N track (N3D)	<=1	None
Track Pt	< 1+0.005*EtCorr GeV	< 0.25*EtCorr GeV
Cone 0.4 Track Iso	< 2.0+0.005*EtCorr	< 5.0
2nd CES cluster E*sin(theta)	EtCorr<18:< 0.14*EtCorr	None
(both strip and wire E individually)	EtCorr>18:< 2.4+0.01*EtCorr	

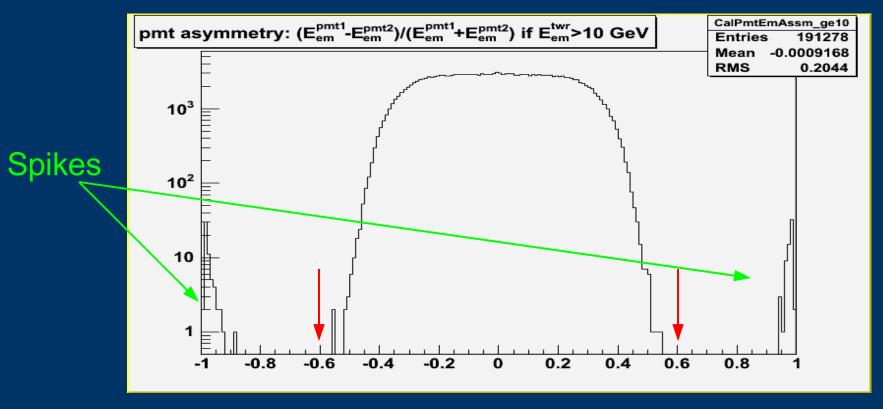
Jet Selection

- Cone size = 0.4
- Remove EM objects from Jet list
- All jets are corrected up to level 6.
- Corrected Et > 15 GeV.
- Can be Central or Plug (eta<3)

Photon + 2Jets events ~ 606k

Event Selection

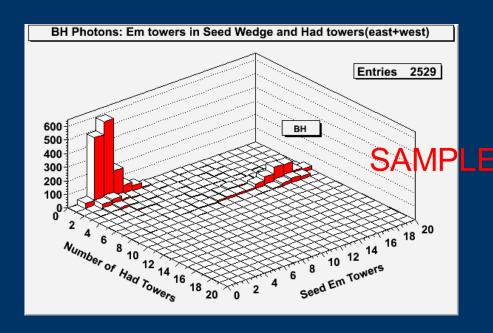
- Require at least one of the triggers
- Pass good run (v17_pho_02)
- Class 12 vertices >=1
- z position < 60 cm
- Tight Photon+Jets>=1 (==2 for the rest of the talk)

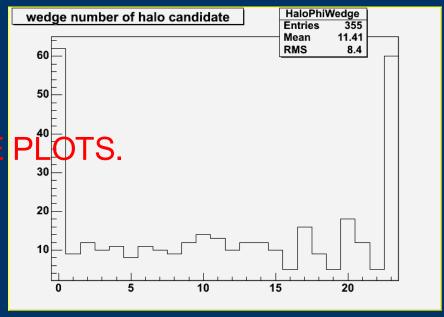

Photon + 2Jets events ~ 606k

Backgrounds

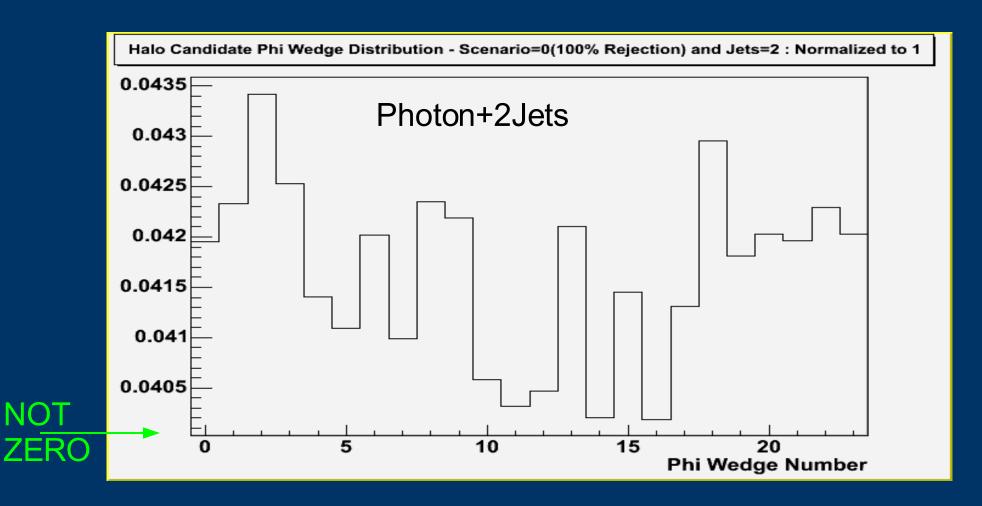
- Non-collision
 - PMT Spikes
 - Beam Halo
 - Cosmics
- SM processes with real MEt, where e->gamma
 - Primarily Ws., smaller contributions from Z, di-boson and other
- QCD fake MEt

Tackling PMT Spikes


• Reject 100% using PMT asymmetry.

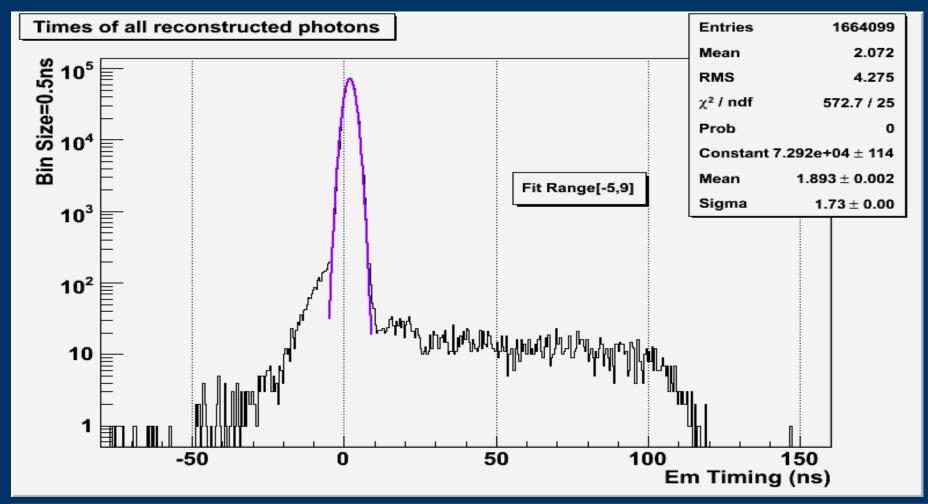


- Use topological cuts
- Looking from two ways.
 - EM time
 - Halo id cuts (cdfnote:8409) (Laborate)
- Use electrons to measure inefficiency
- Need little more work to understand mis-id rates

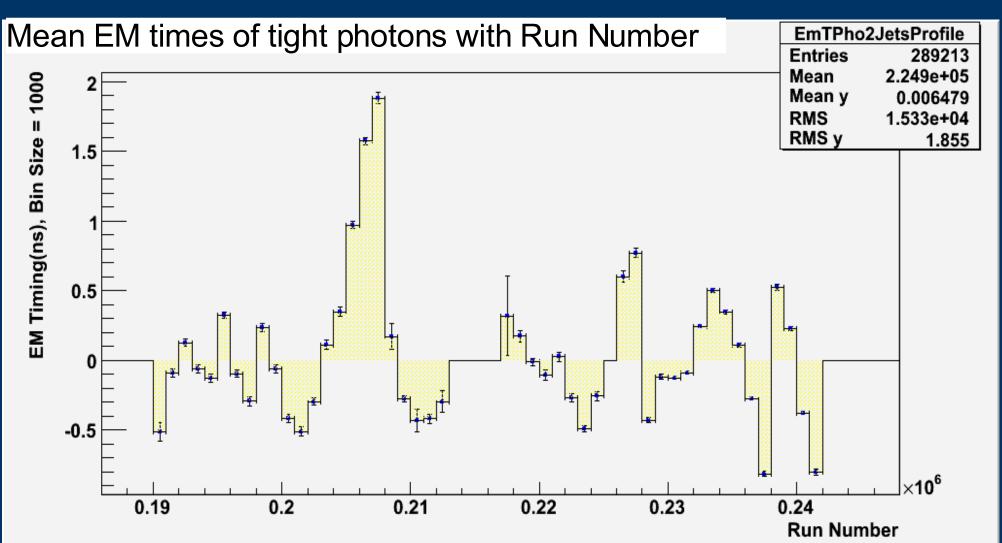

```
Scenario
                          Selection Cuts
         Seedwedge > 8 || (eastNhad + westNhad) > 1
   0
         Seedwedge > 4 && (eastNhad + westNhad) > 1
         seedwedge > 4 && (eastNhad + westNhad) > 2
   2
         seedwedge > 7 && (eastNhad + westNhad) > 2
   3
         seedwedge > 8 && (eastNhad + westNhad) > 2
   4
         seedwedge > 8 && (eastNhad + westNhad) > 3
   5
```

- seedWedge = number of EM towers (E_T>0.1 GeV) in same wedge as photon
- Nhad = number of plug HAD towers (E_T>0.1 GeV) in same wedge as photon

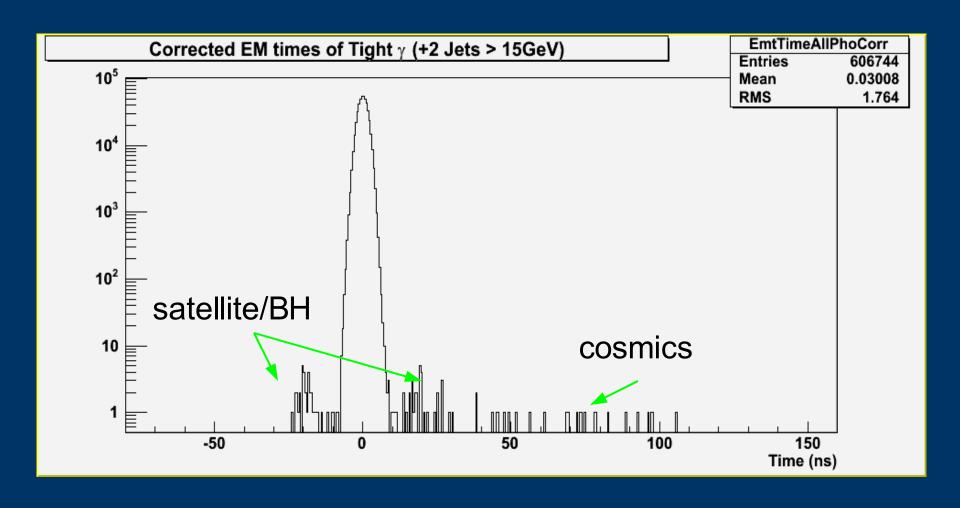
VERTICES=0



Beam Halo Estimates for Different Scenarios


BH Scenario	Inefficiency(%)	Identified	Expected(mis-id)
0	7.38	47629	44744
1	6.29	39076	38169
2	1.66	11493	10082
3	0.58	3888	3525
4	0.35	2372	2114
5	0.09	667	572

From electron data.


EM Timing Corrections – All Photons

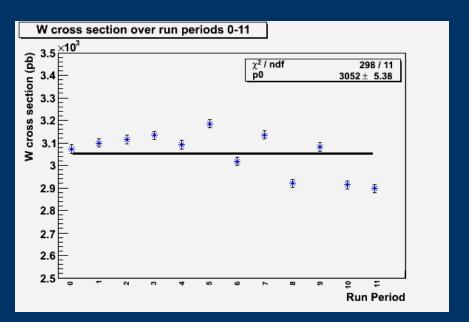
EM Timing Corrections

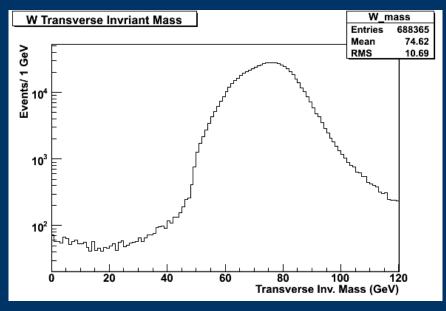
Photon (+2Jets) EM Timing

Tackling Cosmics

- Used corrected EM timing (Many thanx to Max)
- Time window >30ns and <130ns
 - ~60% cosmics with Trackless Muon stubs (within 30 degree cone of the photon)
 - Use this to estimate the remainder in 400pb-1 that has no timing info
 - We expect < 22 events

Tackling Electron Background

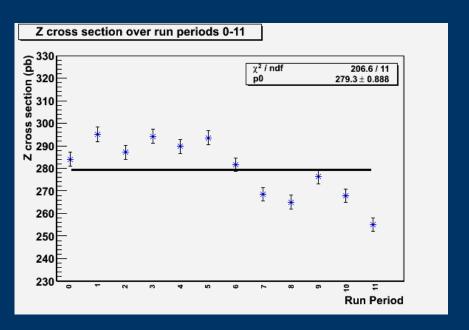

- Problem is e faking gamma
- Use Phoenix rejection (~60% when Et >35GeV)
- To estimate, use e->gamma fake rate from Sasha et.al. cdfnote 8220.
 - tau fake contribution is very small for Et>30GeV
- Estimate of electrons left in the sample: e+2Jets:
 - 291.079 +/- 1.455(stat) +/- 34.675(sys)
 - Fake rate uncertainty due to
 - Fake rate itself.
 - Fake electrons
 - statistics

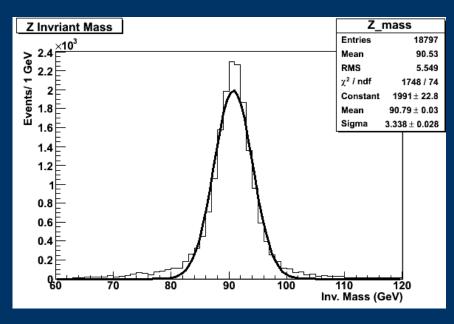

Photon-like electron id cuts

Co To Next Page Variable	Cut value	
detector	central	
conversion	No	
corrected E_T	$> 30 \mathrm{GeV}$	
CES fiduciality	$ X_{CES} \le 21 \text{ cm}$	
	$9 \text{ cm} \leq Z_{CES} \leq 230 \text{ cm}$	
average CES χ^2	≤ 20	
Had/Em	$\leq 0.055 + 0.00045 \times E$	
$E_T^{Iso(corr)}$ in cone 0.4	$\leq 0.1 \times E_T \text{ if } E_T < 20 \text{ GeV}$	
	$\leq 2.0 + 0.02 \times (E_T - 20) \text{ if } E_T \geq 20 \text{ GeV}$	
N3D tracks in cluster	= 1, 2	
$E/p ext{ of } 1^{st} ext{ track}$	$0.8 \le E/P \le 1.2 \text{ if } P_T < 50 \text{ GeV}$	
	no cut if $P_T \geq 50 \mathrm{GeV}$	
2^{nd} track p_T if N3D = 2	$\leq 1.0 + 0.005 \times E_T$	
$TrkIso0.4 - P_T^{1^{st}trk}$	$\leq 2.0 + 0.005 \times E_T$	
E_T of 2^{nd} CES	$\leq 0.14 \times E_T \text{ if } E_T < 18 \text{ GeV}$	
cluster (wire and strip)	$\leq 2.4 + 0.01 \times E_T \text{ if } E_T \geq 18 \text{ GeV}$	
$ \Delta z = z_{vtx} - z_{trk}$	≤ 3 cm	

Photon-like Electron ID Validation – W Cross section

3052 pb (hep-ex/0406078v2: 2782+/14+/59)





One electron & Met>20GeV, Lum: 2034 pb, good run list v.17_pho_02

Photon-like Electron ID Validation – Z Cross section

279.3. pb (hep-ex/0406078v2: 255.2+/3.9+/6 pb)

Two electrons, Lum: 2034 pb, good run list v.17_pho_02

Not-so Final Numbers!

Background	Expect
Halo (Scen. 4)	2114
Electron	291
Cosmic	<22

Summary

- Most of the backgrounds are well understood.
- Need to look at 1/10 test.
- Look at stuff with high MEt significance.
- Include p12 data.
- Find new physics.

Thank you.